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the base of the north part of the arcade (region B).
Therefore, we can distinguish directly regions
where the emission measure distribution along
the line of sight is broader and whether the
plasma excess is cool or hot.

Superimposing the CIFR map with an emis-
sion map in the TRACE 171 A filter, which is
sensitive mostly to cooler plasma around 1 MK,
we see that this scenario is reliable (Fig. 3): The
dimmed spots (D and B) clearly correspond to
bright regions in the TRACE image, i.e., there is
an excess of cool plasma along the line of sight.

The CIFR map (Fig. 2) shows directly the
existence of thermally coherent thin magnetic
structures and that hot coronal loops are highly
transversally structured. According to theoretical
conjectures (5, 12), the tangling of magnetic
flux tubes is a prerequisite for magnetic energy
release. In this perspective, the tightness and en-

twining of the thin thermal structures on the left
side of the core loop arcade are a direct indica-
tion that this region is the probable site of fre-
quent major heating episodes.
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Continuous Plasma Outflows from the
Edge of a Solar Active Region as a
Possible Source of Solar Wind
Taro Sakao,1* Ryouhei Kano,2 Noriyuki Narukage,1 Jun'ichi Kotoku,2 Takamasa Bando,2
Edward E. DeLuca,3 Loraine L. Lundquist,3 Saku Tsuneta,2 Louise K. Harra,4
Yukio Katsukawa,2 Masahito Kubo,5 Hirohisa Hara,2 Keiichi Matsuzaki,1
Masumi Shimojo,6 Jay A. Bookbinder,3 Leon Golub,3 Kelly E. Korreck,3 Yingna Su,3
Kiyoto Shibasaki,6 Toshifumi Shimizu,1 Ichiro Nakatani1

The Sun continuously expels a huge amount of ionized material into interplanetary space as the solar
wind. Despite its influence on the heliospheric environment, the origin of the solar wind has yet to
be well identified. In this paper, we report Hinode X-ray Telescope observations of a solar active region.
At the edge of the active region, located adjacent to a coronal hole, a pattern of continuous outflow
of soft-x-ray–emitting plasmas was identified emanating along apparently open magnetic field lines
and into the upper corona. Estimates of temperature and density for the outflowing plasmas suggest
a mass loss rate that amounts to ~1/4 of the total mass loss rate of the solar wind. These outflows
may be indicative of one of the solar wind sources at the Sun.

Since early studies on comet tail orientations
in the middle of the twentieth century (1, 2),
it has been widely perceived that the

interplanetary space around the Sun, the helio-
sphere, is permeated with continual but varying
flows of charged particles: This material flow is the
solar wind (3, 4). A huge amount of material is
expelled from the Sun in the solar wind, at a rate
reaching as high as 1 × 1012 g s−1, into the helio-
sphere. It extends beyond Jupiter, showing a variety
of interactions with planets, including Earth. Ob-
servations with space-borne instruments have so far
revealed various basic features of the solar wind,
such as the existence of two distinct categories of
wind velocities: one, the fast solar wind, with
velocity as high as ~800 km s−1, and the other, the
slow wind, with velocity ~300 km s−1. None-

theless, at least two fundamental issues remain
unresolved: One is the location of the source of
the outflows (i.e., the source regions) on the Sun,
and the other is the acceleration mechanism of
the flows after departing the solar surface.

It is now well recognized that the fast solar
wind originates from (polar) coronal holes (5, 6).
Recent observations with the Solar and Helio-
spheric Observatory (SOHO) satellite have
enabled us to investigate polar coronal holes with
line-of-sight Doppler measurements (7, 8). How-
ever, imaging observations of the outflowing
material are still rare. The situation is even more
uncertain for the case of the slow solar wind, in
which multiple source regions have been postu-
lated, such as the boundary of polar coronal
holes, helmet streamer structures (from near the

top of closed loop structures in the solar corona)
(9, 10), or from the edge of active regions (11).
But again, no clear identification of the source
outflow has so far been made.

In this paper, we report imaging observations
of a solar active region made with the X-ray
Telescope (XRT) (12) aboard the Hinode (13)
satellite. XRT is a grazing incidence soft-x-ray
imager that achieves high angular resolution
(consistent with 1 arcsec pixel size) with broad
and continuous temperature coverage for coro-
nal plasmas ranging from 1 million kelvin (MK)
to 10 MK. The XRTobservations presented here
reveal a pattern of continuous outflow of soft-
x-ray–emitting plasmas along apparently open
field lines from the edge of an active region
butting up adjacent to a coronal hole. Furthermore,
the observations from XRT are strongly sup-
ported by observations with the Extreme Ultra-
violet (EUV) Imaging Spectrometer (EIS) (14),
also aboard Hinode, which detected persistent
upward Doppler motions of coronal plasmas from
the apparent outflowing region throughout the
XRT observation interval. We assert that these
observations are possibly the first identification
of outflowing solar wind material.

XRT observed the active region NOAA AR
10942 for 3 consecutive days, from 20 to 22
February 2007, over which period the region was
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located east of solar disk center near the equator.
The observations were chiefly made with XRT's
titanium-on-polyimide (Ti-poly) filter, with the
size of the readout area on the charge-coupled
device (CCD) being 512 pixels by 512 pixels,
which was sufficient to cover the entire active re-
gion and the surrounding corona. The focus posi-
tion of the telescope was set to provide the highest
angular resolution across the region. XRT also
made a series of full-Sun exposures about every 6
hours with Ti-poly and thin-aluminum–on–mesh
(thin-Al–mesh) filter pairs, with which fainter
(nonactive region) coronal features can be well
imaged. The active region was located just west of
a large coronal hole (Fig. 1). The coronal hole was
long-lived, being present at least one solar rotation
both before and after the observation period.

A prominent feature seen in the XRT images
(movie S1) is a pattern of plasma outflow along a
bundle of fanlike magnetic field lines emanating
from a region located at the east edge of the
active region. At least the left (east) half of the
field line bundle (Fig. 1) is likely to be opened,
that is, extending into the outer corona. This
outflowing feature was continuously present
throughout the entire 3-day observation period.
In an attempt to estimate transverse velocity
(velocity in the plane orthogonal to the line-of-
sight direction) of the outflow, we created a
time-distance plot from the Ti-poly images. The
time-distance plot in Fig. 2 shows patterns in the
flowwith transverse velocity ranging between 100
to 170 km s−1, with a typical value of 140 km s−1.
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Fig. 1. A full-Sun image taken with the Ti-poly filter of the XRT at 11:13:45 UT on 22 February 2007, shown
with a logarithmic intensity scale. Solar north is up and east to the left in this and in all solar images in this
paper. Exposure duration is 8 s. The square box indicates the area shown in Fig. 2 and movie S1. The box
location on the Sun moves westward with time while the spacecraft pointing tracks solar rotation.
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Fig. 2. (A) XRT image taken at 13:27:01 UT on 22
February 2007 (Ti-poly filter; 16-s exposure) with the
position of the CCD pixels (“slit”) used for preparing (B)
shown superimposed as the white horizontal bar. (B) (Left)
Time-distance plot generated from the intensity distribution
along the slit shown in (A). The vertical axis indicates time
in ks from 22 February 2007, 11:33:34 UT, lasting to
17:40 UT. The horizontal axis gives distance along the slit
in Mm measured from the west (right) edge of the slit toward east (left). (Right) Expanded display for the interval indicated by the two white lines in the left
image (12:28:36 to 13:56:28 UT). The dotted line represents west-to-east transverse velocity of 140 km s−1.
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Whereas the observation was mostly made
with the Ti-poly filter for the 3 days, imagery of
the region with the thin-Al–mesh filter was also
made on 21 February (10:42 to 23:59 UT). By
using pairs of images taken with both filters, we
can determine an estimate of the physical prop-
erties of the plasma with the filter-ratio method
(15). For the source region, we estimated the tem-
perature ~1.1 MK and emission measure ~7.9 ×
1042 cm−3 for a volume that corresponds to a sin-
gle CCD pixel times line-of-sight depth (Fig. 3).
Assuming a line-of-sight depth of 1.5 Mm, this
gives a density of the region of ~3.2 × 109 cm−3.
With the typical transverse outflow velocity of
140 km s−1, a crude estimate on the amount of the
outflowing material per unit time is then ~2.8 ×
1011 g s−1. If all the outflowing material were to
escape to the interplanetary space along open field
lines, this would be equivalent to ~1/4 of the total
mass loss rate for the solar wind.

The source region of the outflows, which
corresponds to an ensemble of small sunspots (or
pores) as seen by the Solar Optical Telescope
(SOT) (16, 17) aboard Hinode, does not show
any particular brightening activities in soft x-rays
associated with the outflows. This is also the case
throughout the entire observation period.

In the XRT images, the fanlike field lines
along which materials show outflowing motion
do not have obvious corresponding conjugate
footpoints on the east side. This, however, does
not immediately imply that the field lines open
out into interplanetary space, because it is pos-

sible that these fields form large-scale closed
loops but only a portion of such loops is visible
in soft x-rays because of temperature and/or den-
sity distributions along the loops. On the other
hand, computations show (Fig. 4) that potential
field lines from the source region at the active
region–coronal hole boundary reach the source

surface, indicating open field lines. This sug-
gests that at least a fraction of the outflowing
material along the fanlike field lines escapes into
interplanetary space, resulting in the solar wind.

It has been reported, on the basis of ob-
servations with the Transition Region and
Coronal Explorer (TRACE) observatory (18)
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Fig. 3. (A) XRT image of NOAA AR 10942 taken at 23:57:45 UT on 21
February 2007 with the Ti-poly filter. The source region of the outflows is
shown by the circle, whose radius is 10.9 Mm. (B) Map of filter-ratio
temperatures for the same area as in (A), derived from a pair of images
taken with the thin-Al–mesh and Ti-poly filters at 23:57:14 and 23:57:45

UT, respectively, on 21 February 2007. Exposure duration for each image
is 16 s. Black areas in the active region correspond to saturated CCD pixels
in the thin-Al–mesh image, where filter-ratio temperatures could not be
derived with this pair of images. The white circle indicates the same region
as (A).

A B

Fig. 4. (A) XRT full-Sun image displayed with a logarithmic intensity scale at 00:02:13 UT on 21
February 2007, taken with the thin-Al–mesh filter (4-s exposure). The active region NOAA AR 10942 is
slightly to the east of Sun center. (B) Potential field lines calculated from a magnetogram taken by
SOHO Michelson Doppler Imager (MDI) at 00:03:02 UT on 21 February 2007, with the source surface
set at 2.5 solar radii. Field lines reaching the source surface, i.e., those considered to open out into
interplanetary space, are shown in yellow, whereas closed lines are shown in blue. The field lines are
overlaid on the same XRT image as that in (A). Because of lack of magnetogram data for the polar
regions, field lines emanating from the polar regions should not be regarded as valid (such regions
were filled with a null magnetic signal when performing the potential field calculation).
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and the EUV Imaging Telescope (EIT) (19)
aboard SOHO, that traveling disturbances exist
along fanlike coronal magnetic field lines and
that these have been identified as slow magneto-
acoustic waves with period of 3 min (20, 21).
Meanwhile, it has been argued that there are flows
along coronal loops as observed by TRACE and
SOHO, with velocities of several tens of km s−1

in emission lines at temperatures around 0.6 to
1 MK (22, 23). Although the relationship be-
tween the flow pattern reported in this study and
the wave phenomena seen with TRACE and EIT
is a subject for subsequent studies, EIS aboard
Hinode, with which line-of-sight Doppler veloc-
ities of coronal plasmas can be measured, also
identified upward Doppler velocities of ~50 km s−1

in a coronal emission line (FeXII) at the outflowing
region in each of the 3 days of the XRT obser-
vations (EIS data from 23:45 UT on 20 February,
05:32 UT on 21 February, and 18:08 UT on
22 February, with the last one indicating velocity
possibly as high as ~90 km s−1). These Doppler
velocities may be consistent with the typical trans-
verse velocity of 140 km s−1 obtained from XRT,
considering the inclination of the field lines. The
EIS upward Doppler signatures add support to
the interpretation of the XRT observations as
evidence for the presence of outflowing plasmas.

The assertion that the observed outflows are
a possible source of the solar wind is also
supported by interplanetary scintillation tomo-
graphic observations of the solar wind (11), which
argue that the low-speed solar wind is most likely

associated with regions that include rapidly ex-
panding open magnetic flux adjacent to active
regions. Furthermore, in situ measurements of
solar wind particles and magnetic field with the
Advanced Composition Explorer (ACE) satellite
support the idea that one of the sources of the slow
solar wind resides in boundaries between coronal
holes and active regions (24). The striking
resemblance in the magnetic field configuration
proposed in those studies and the present obser-
vations suggest that the observed outflows corre-
spond to one of the sources of the slow solar wind.
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Slipping Magnetic Reconnection
in Coronal Loops
Guillaume Aulanier,1* Leon Golub,2 Edward E. DeLuca,2 Jonathan W. Cirtain,2 Ryouhei Kano,3
Loraine L. Lundquist,2 Noriyuki Narukage,4 Taro Sakao,5 Mark A. Weber2

Magnetic reconnection of solar coronal loops is the main process that causes solar flares and
possibly coronal heating. In the standard model, magnetic field lines break and reconnect
instantaneously at places where the field mapping is discontinuous. However, another mode may
operate where the magnetic field mapping is continuous but shows steep gradients: The field lines
may slip across each other. Soft x-ray observations of fast bidirectional motions of coronal loops,
observed by the Hinode spacecraft, support the existence of this slipping magnetic reconnection
regime in the Sun’s corona. This basic process should be considered when interpreting
reconnection, both on the Sun and in laboratory-based plasma experiments.

Magnetic reconnection is a diffusive mag-
netohydrodynamic (MHD) process,
through which magnetic loops ex-

change their connections at large scales (1). In
magnetic loops whose footpoints are both rooted
in a dense conducting layer, which is the case in
the solar atmosphere (2, 3), reconnection also
redistributes field-aligned electric currents far from
where they were located early on (4–6). When

reconnection occurs across layers where the
magnetic mapping is discontinuous (which natu-
rally results from existing magnetic null points),
magnetic loops instantaneously exchange their
large-scale connections by pairs. This is always
true, regardless of the rate of magnetic flux being
transferred through the local reconnection site. It
is the standard reconnection model, and it is used
to model solar flares in general. However, solar

observations, combined with theoretical recon-
structions of the coronal magnetic field, show that
brightenings related to solar flares are often not
associated with mapping discontinuities but rather
with so-called quasi-separatrix layers (QSLs),
across which the magnetic mapping has very sharp
spatial gradients, although still being continuous
(7–9). Whether magnetic reconnection, instead of
simple magnetic diffusion, occurs in QSLs, and, if
so, what are its large-scale consequences, have
been debated for more than 10 years, because the
absence of mapping discontinuities in QSLs for-
bids the occurrence of standard reconnection.

Three-dimensional (3D) MHD simulations
that included collisional diffusive terms in Ohm’s
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